skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arroyo-Esquivel, Jorge"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ndiribe, Charlotte (Ed.)
    Population growth models typically incorporate attributes observable at the population scale, often overlooking the trade-off between individual-level reproductive and behavioral traits and their influence on population size. Individuals’ survival and reproductive abilities are expected to dynamically evolve depending on the population size, which is affected by the aggregation of individual decisions. Reconciling individual-level incentives with population-level dynamics requires an integrative framework that explicitly addresses the intertwined relationships between population growth and individual decision-making processes. We formulate a multiscale modeling framework that integrates the logistic population growth model with an optimal foraging model to study the interplay between individual-level behavioral incentives and population growth dynamics. Specifically, we explicitly model individuals’ decision-making process, which shapes their reproductive fitness and, ultimately, influences population growth. Moreover, we incorporate the concept of resource limitations from the logistic growth model to account for dynamic incentives that depend on population size. Our results yield insights into the multiscale processes, such as the selection pressure of behavioral choices and the cost-benefit of social activities that influence population robustness beyond mere size and aggregated reproductive traits. We found that populations exhibiting similar limiting sizes may undergo significantly different transient dynamics. This variation may be induced by environments imposing distinct behavioral cost-benefit trade-offs that require individuals to exert different levels of foraging effort to maintain reproductive viability. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  2. Abstract In restoration ecology, the Field of Dreams hypothesis posits that restoration efforts that create a suitable environment could lead to the eventual recovery of the remaining aspects of the ecosystem through natural processes. Natural processes following partial restoration has led to ecosystem recovery in both terrestrial and aquatic systems. However, understanding the efficacy of a “Field of Dreams” approach requires a comparison of different approaches to partial restoration in terms of spatial, temporal, and ecological scale with what would happen given more comprehensive restoration efforts. We explore the relative effect of partial restoration and ongoing recovery on restoration efficacy with a dynamical model based on temperate rocky reefs in Northern California. We analyze our model for both the ability and rate of bull kelp forest recovery under different restoration strategies. We compare the efficacy of a partial restoration approach with a more comprehensive restoration effort by exploring how kelp recovery likelihood and rate change with varying intensities of urchin removal and kelp outplanting over different time periods and spatial scales. We find that, in the case of bull kelp forests, setting more favorable initial conditions for kelp recovery by implementing both urchin harvesting and kelp outplanting at the start of the restoration project has a bigger impact on the kelp recovery rate than applying restoration efforts through a longer period of time. Therefore, partial restoration efforts, in terms of spatial and temporal scale, can be significantly more effective when applied across multiple ecological scales in terms of both the capacity and rate for achieving the target outcomes. 
    more » « less
  3. Abstract One of the main factors that determines habitat suitability for sessile and territorial organisms is the presence or absence of another competing individual in that habitat. This type of competition arises in populations occupying patches in a metacommunity. Previous studies have looked at this process using a continuous-time modeling framework, where colonizations and extinctions occur simultaneously. However, different colonization processes may be performed by different species, which may affect the metacommunity dynamics. We address this issue by developing a discrete-time framework that describes these kinds of metacommunity interactions, and we consider different colonization dynamics. To understand potential dynamics, we consider specific functional forms that characterize the colonization and extinction processes of metapopulations competing for space as their limiting factor. We then provide a mathematical analysis of the models generated by this framework, and we compare these results to what is seen in nature and in previous models. 
    more » « less
  4. Abstract Human‐caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it. An example of a system where identifying how the drivers of different aspects of resiliency can inform restoration under climate change is the northern coast of California, where kelp experienced a decline in coverage of over 95% due to the combination of an intense marine heat wave and the functional extinction of the primary predator of the kelp‐grazing purple sea urchin, the sunflower sea star. Although restoration efforts focused on urchin removal and kelp reintroduction in this system are ongoing, the question of how to increase the resiliency of this system to future marine heat waves remains open. In this paper, we introduce a dynamical model that describes a tritrophic food chain of kelp, purple urchins, and a purple urchin predator such as the sunflower sea star. We run a global sensitivity analysis of three different resiliency metrics (recovery likelihood, recovery rate, and resistance to disturbance) of the kelp forest to identify their ecological drivers. We find that each metric depends the most on a unique set of drivers: Recovery likelihood depends the most on live and drift kelp production, recovery rate depends the most on urchin production and feedbacks that determine urchin grazing on live kelp, and resistance depends the most on feedbacks that determine predator consumption of urchins. Therefore, an understanding of the potential role of predator reintroduction or recovery in kelp systems relies on a comprehensive approach to measuring resiliency. 
    more » « less